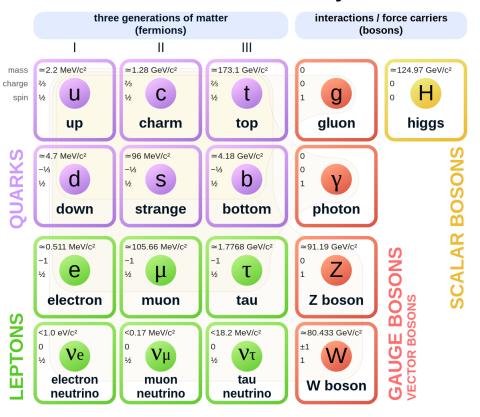
High precision measurement of W boson mass

WU, Zhaofeng

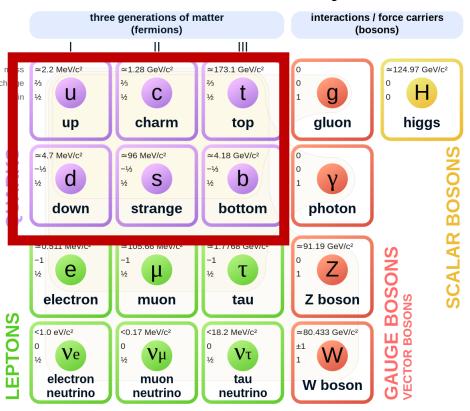
KU, Che-hsuan


Introduction to Standard Model

Standard model introduction

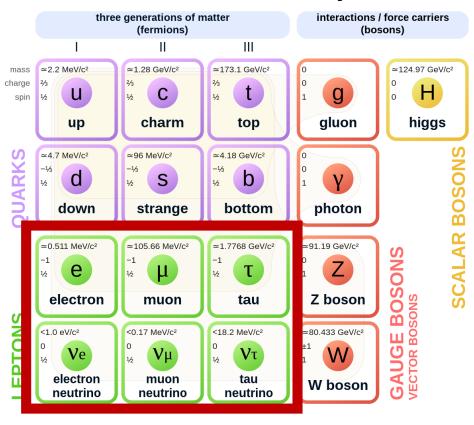
Fundamental particles in nature and the particles that govern their interaction with each other.

- 6 quarks & 6 leptons: building blocks of matter
- 4 force-carrying particles
- 1 Higgs: Give masses to particles


Standard Model of Elementary Particles

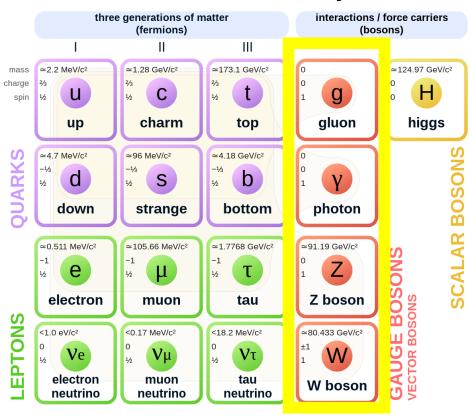
Quarks

- Six different types of quark
- Has color and can interact with each other through the strong force
- The building blocks of hadrons (protons and neutrons)


Standard Model of Elementary Particles

Lepton

- Six different types of leptons
- Neutrinos are a subgroup of the leptons
- Electron: weak and EM interaction
- Muon & Tau: heavier electron
- Neutrinos: only weak interaction → very hard to detect
- * Electron and neutrino come in pairs
- * Analogy to spin ½ particles


Standard Model of Elementary Particles

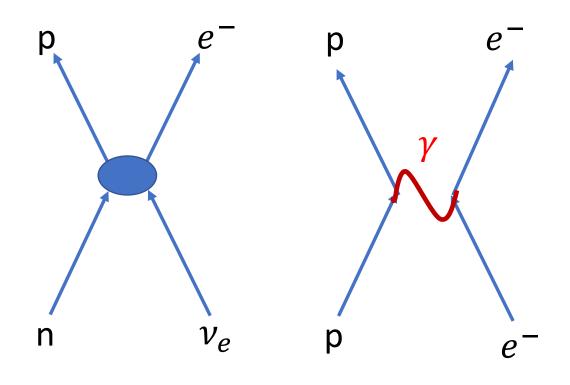
Bosons

- 4 fundamental forces of nature.
- 3 out of 4 are included in the SM of particle physics:
 - electromagnetic force
 - strong force
 - weak force.
- The Bosons are force carriers. (except Higgs)

Standard Model of Elementary Particles

Electroweak Unification

Weak and EM interaction


proton and neutron are very similar except for the charge.

Similarity between weak and EM interaction?

However, weak interaction:

- Short range
- Extreme weak

Extremely massive force carriers may save the argument.

Massive force carriers

W and Z bosons are significantly massive

- W ~ 80 GeV/c^2 and Z ~ 91 GeV/c^2
- Proton mass ~ 0.9 GeV/c^2 , 100 times larger!

High mass \rightarrow large energy difference \rightarrow small effect of perturbation \rightarrow weak interaction

High mass \rightarrow more channels to decay \rightarrow short-lived \rightarrow short-range interaction

Electroweak unification

- Why EM and weak interaction is similar?
- Because they are the same interaction!

At high energy level, the mass of force carriers becomes not so important:

Weak interaction electromagnetic interaction

Electroweak interaction

The break of this unification is caused by the Higgs mechanism:

The Higgs field give mass to Z & W boson only

Electroweak Mixing

Under the electroweak unification, the force carriers:

• One Vector-like set of bosons
$$\overrightarrow{W} = \begin{bmatrix} W^+ \\ W^0 \\ W^- \end{bmatrix}$$

- One scalar-like set of boson B^0
- Both sets have different coupling constants, α and β

Remember the electron and neutrino pairs in SM, analog to spin of electron.

 \overrightarrow{W} is like the Spin operator of electron \overrightarrow{S} W^+ and W^- corresponds to S^+ and S^-

Electroweak mixing

$$W^0 \to Z$$
 while $B^0 \to \gamma$?

• The neutral part of the \overrightarrow{W} and B^0 mix together while the Higgs mechanism happens

•
$$\begin{bmatrix} \beta B^0 \\ \alpha W^0 \end{bmatrix}$$
 $\rightarrow \begin{bmatrix} \beta B^0 \cos \theta_w + \alpha W^0 \sin \theta_w \\ -\beta B^0 \sin \theta_w + \alpha W^0 \cos \theta_w \end{bmatrix}$ Like a rotation with angle θ_w

- $\beta B^0 cos\theta_w + \alpha W^0 sin\theta_w \rightarrow g_e \gamma \& -\beta B^0 sin\theta_w + \alpha W^0 cos\theta_w \rightarrow g_z Z$
- $\alpha W^{\pm} \rightarrow g_{w}W^{\pm}$

Electroweak mixing

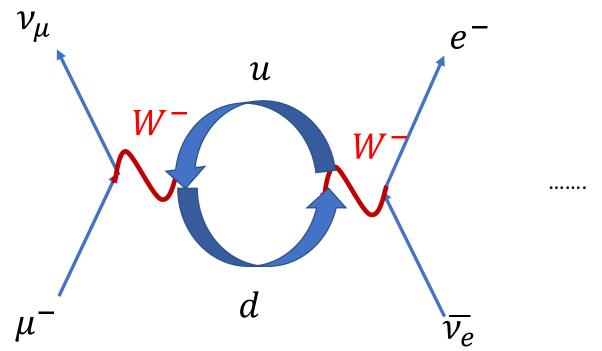
• The mixing also appears in the mass relation of W & Z

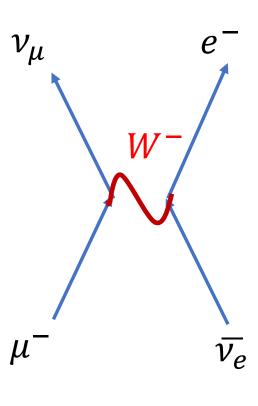
$$M_W = M_Z \cos \theta_W$$

Deducing M_W from M_Z and θ_W !

The theoretical relation

- M_Z measured by other accelerator measurements
- θ_W can be derived from the coupling constants g_W and g_e
- Finally,


$$m_W^2 \left(1 - \frac{m_W^2}{m_Z^2} \right) = \frac{\pi \alpha}{\sqrt{2} G_F}$$


Equivalent to $M_W = M_Z \cos \theta_W$

- $\alpha \propto g_e^2$
- $G_F \propto g_W^2/M_W^2$
- α/G_F related to θ_W

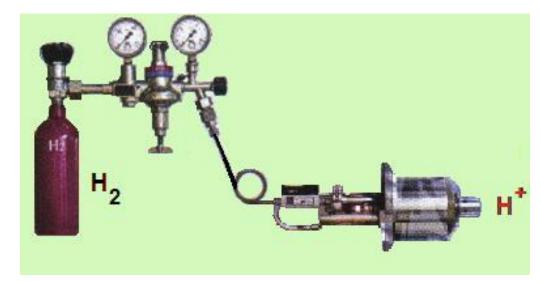
Almost there...

- G_F is derived from muon lifetime $\tau_{\mu} \sim \frac{1}{G_F^2}$
- Not only the first order contribute...
- But higher order calculation is very technical

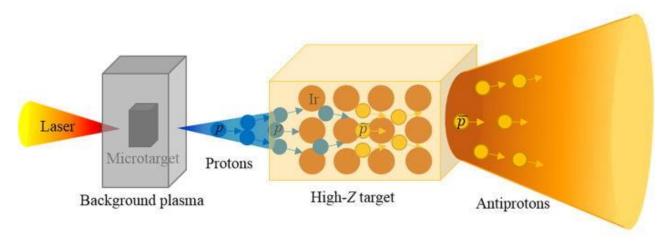
The final formula

$$m_W^2 \left(1 - \frac{m_W^2}{m_Z^2} \right) = \frac{\pi \alpha}{\sqrt{2} G_F} (1 + \Delta r)$$

The higher order correction term Δr Different theoretical groups have calculated different values Only refer to the result done by *Review of Particle Physics* later


Introduction to experimental particle physics

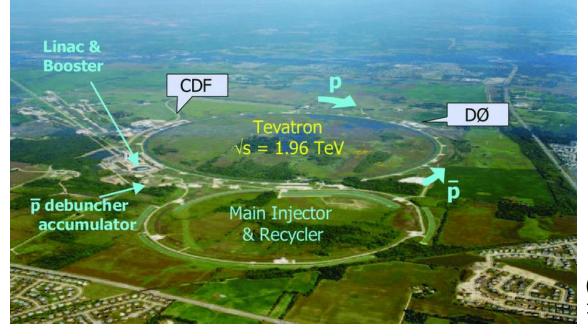
Main Stages


- Create protons/anti-protons from Hydrogen, accelerate to nearly c
- Smash protons/ anti-protons at the center of the detector ('events')
- Track the out-going particles from the detected 'hits' on detectors
- Identify types of particles
- Reconstruct decay structure
- Filter meaningful events
- Analyze statistical properties

Pre-collision process

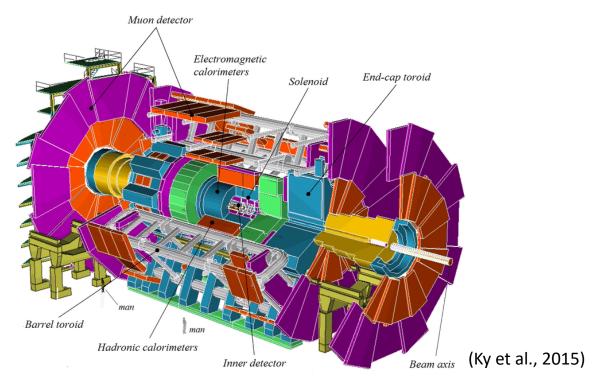
- Creation of proton
 - Hydrogen broke down to proton and electron under large electric field.
- Creation of anti-proton
 - High energy protons colliding with nuclei in the targeted metal produce protonantiproton pairs.

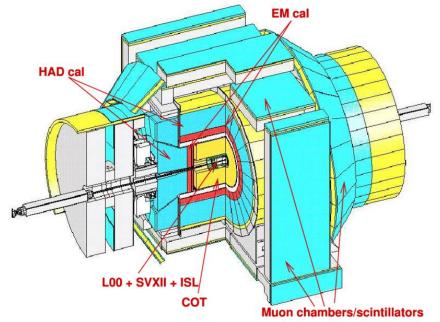
(Credit: taking_a_closer_look_at_LHC)



Pre-collision process

- Creation of proton
 - Hydrogen broke down to proton and electron under large electric field.
- Creation of anti-proton
 - High energy protons colliding with nuclei in the targeted metal produce protonantiproton pairs.
- Hadron Accelerator
 - Large Hadron Collider (CERN, Europe)
 - Tevatron (Fermilab, U.S.)

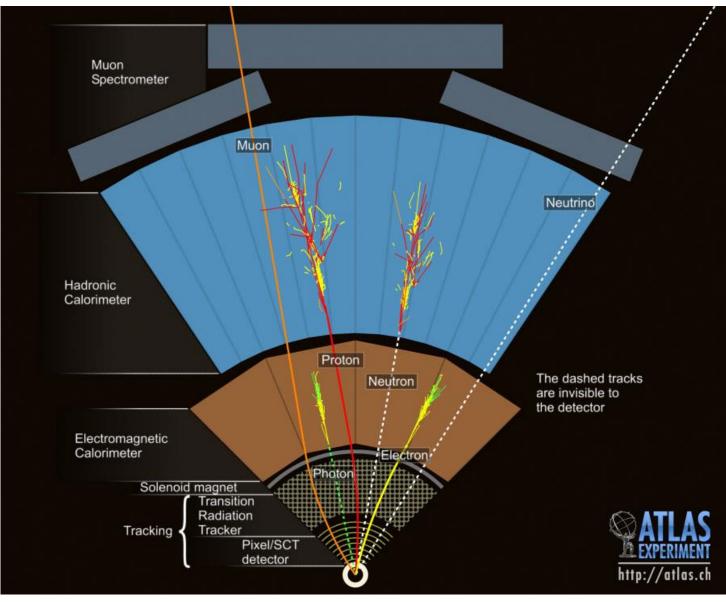

(Credit: IEEE Spectrum)



(Incandela et al., 1926)

Post-collision process

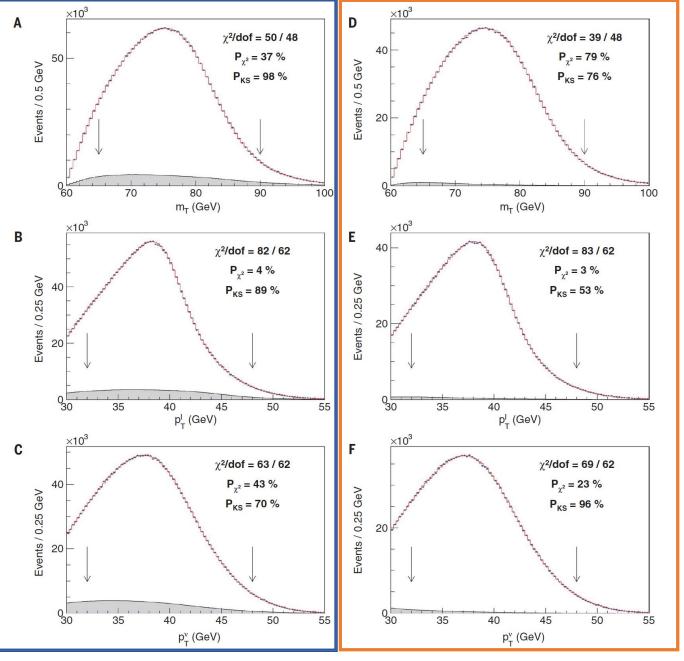
- Mechanically designed detectors
 - ATLAS at CERN (Europe)
 - CDF at Fermilab (U.S)



(Roberto, 2022)

Post-collision process

- Mechanically designed detectors
 - ATLAS at CERN (Europe)
 - CDF at Fermilab (U.S)
- Particles hit the detector and leave traces
- Based on their traces, particles can be identified

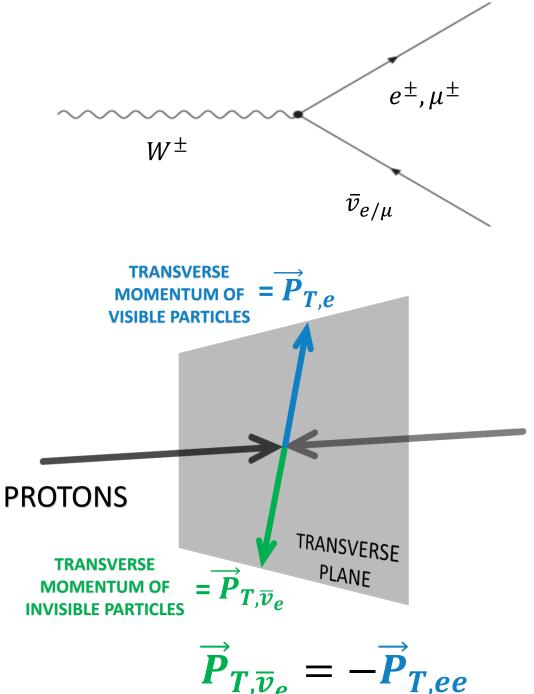


(Credit: Stanford ATLAS)

Events analysis

- Meaningful events are selected based on E_{min} of outgoing particles
- Distributions of several variables are fitted to extract the desired physical observable

CDF Collaboration et al., Science 376, 170-176 (2022)


Electron

Muon

W boson mass measurement

Events & Challenges

- Leptonic decay
 - $W \rightarrow e + v_e$;
 - $W \rightarrow \mu + v_{\mu}$;
 - Electron: e; Muon: μ ; Neutrino: *v*
- Undetectable Neutrino momentum
 - Charge Neutral
 - Conservation of total transverse momentum

$$\overrightarrow{P}_{T,\overline{v}_e} = -\overrightarrow{P}_{T,ee}$$

Comparison of different experiments

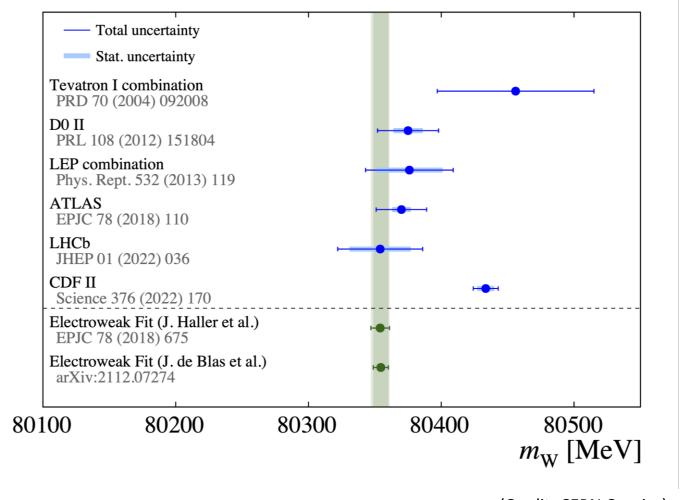
Large Hadron Collider (LHC) [CERN]

- Proton-proton collision
- Discrepancy: $< 1\sigma$ significance

Collider Detector at Fermilab II (CDF II)

- Proton-antiproton collision
- Result: $m_W = 80370 \pm 19 \text{ MeV/c}^2$ Result: $m_W = 80433 \pm 9 \text{ MeV/c}^2$
 - Discrepancy: $\sim 7\sigma$ significance

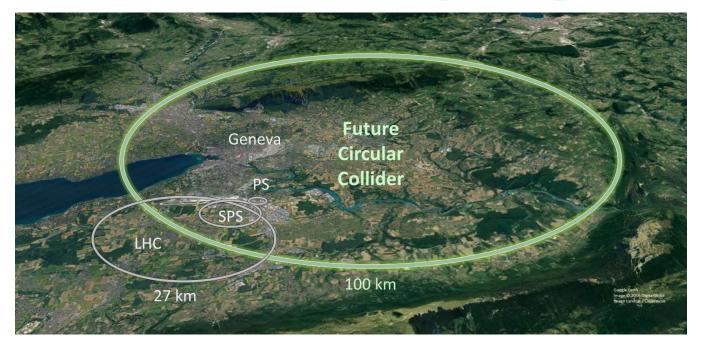
Eur. Phys. J. C (2018) 78:110


CDF Collaboration et al., Science 376, 170–176 (2022)

Why CDF II is more precise?

- Proton-antiproton collision
 - → Smaller Parton momentum uncertainty (Parton: proton, neutron, etc.)
 - \rightarrow Smaller M_W uncertainty
- Cosmic-ray muon rejection
 - Done by powerful computer algorithm
- More sophisticated statistical correction, incorporating with improved understanding of the distribution function

Results comparison


- CDF II
 - Unprecedented precision
 - Relatively larger discrepancy (7σ)
- Possible explanations
 - Systematic error in CDF
 II
 - NEW PHYSICS!!!

(Credit: CERN Courier)

Future outlook

- Veracity of this discrepancy will probably remain a mystery in the foreseeable future
 - Lack of independent measurement with comparable precision
 - More powerful colliders and detectors are in construction
 - No guarantee of similar result with comparable precision in the future

(Credit: CERN)

Conclusion

- The result is very important if it is correct!
- However, both experimental part and theoretical part can make mistakes

If everything is correct within SM,

- New particles? Which enter the Δr calculation
- New theories invoke Supersymmetry?

ALL ARE UNKOWN!

Reference

- Li, S., Pei, Z., Shen, B., Xu, J., Zhang, L., Zhang, X., ... & Bu, Z. (2018). Laser-driven ultrafast antiproton beam. Physics of Plasmas, 25(2), 023111.
- Incandela, Joseph. (1926). Particle Physics at the High Energy Frontier: The Fermilab Collider Experiments.
- Ky, Nguyen & Vân, Nguyễn. (2015). Was the Higgs Boson Discovered?. Communications in Physics. 25. 10.15625/0868-3166/25/1/5941.
- Martinez-Ballarin, Roberto. (2022). Evidence of Dopant Type-Inversion and Other Radiation Damage Effects
 of the CDF Silicon Detectors.
- Particle Collision & Detection (2016). Stanford ATLAS. Stanford University, Web site: https://stanford.edu/group/stanford_atlas/4Particle%20Collision%20and%20Detection
- CDF Collaboration†‡, Aaltonen, T., Amerio, S., Amidei, D., Anastassov, A., Annovi, A., ... & Hopkins, W. (2022).
 High-precision measurement of the W boson mass with the CDF II detector. Science, 376(6589), 170-176.
- Aaboud, M., Aad, G., Abbott, B., Abdallah, J., Abeloos, B., Abidi, S. H., ... & Barnovska-Blenessy, Z. (2018).
 Measurement of the W-boson mass in pp collisions at \$\$\sqrt {s}= 7\,\hbox {TeV} \$\$ s= 7 TeV with the ATLAS detector. The European Physical Journal C, 78(2), 1-61.
- Review of Particle Physics <u>Review of Particle Physics | Progress of Theoretical and Experimental Physics | Oxford Academic (oup.com)</u>